[Contribution from the Chemical Laboratory of North Dakota Agricultural College]

Nicotinyl Isothiocyanate and Some of its Derivatives

By Irwin B. Douglass and Lawrence E. Forman

A number of acyl isothiocyanates are known but only one derived from a heterocyclic acid has been reported.1 This note describes another, prepared from nicotinic acid.

Experimental

Nicotinic acid nitrate was prepared by the method of McElvain² and was transformed into nicotinyl chloride by a modification of the method of Meyer and Graf.3 The nitrate was allowed to react with thionyl chloride for two hours on the steam-bath. After removal of the excess thionyl chloride, the nicotinyl chloride hydrochloride was under vacuum and the portion boiling at 70-90° at 10 mm. was collected. Redistillation gave a 64% yield of nicotinyl chloride.

Nicotinyl isothiocyanate was prepared by allowing the acid chloride to react with ammonium thiocyanate suspended in anhydrous toluene. The mixture was stirred and heated at 125° for five minutes, after which it was quickly filtered and fractionated. A small amount of the isothiocyanate was obtained as a straw colored oil which polymerized on standing: b. p. 121° at 12 mm.; index of refraction, 1.640 at 25°. Anal. Calcd. for C₇H₄N₂OS: S, 19.54. Found: S, 19.83.

THIOUREAS

	Thiourea	Formula	M. p., °C.	Analyses, %			
				Calcd.		Found	
				N	S	N	S
I	α -Nicotinyl- β -phenyl-	$C_{13}H_{11}N_3OS$	154-155	16.34	12.46	15.75	12.35
II	α -Nicotinyl- β -(o-tolyl)-	$C_{14}H_{18}N_3OS$	160-161	15.49	11.82	15.39	11.61
III	α -Nicotinyl- β -(m -tolyl)-	$C_{14}H_{13}N_3OS$	149-150		11.82		12.09
IV	α -Nicotinyl- β -(p -tolyl)-	$C_{14}H_{13}N_3OS$	174-175	15.49	11.82	15.33	11.78
V	β -(α -Naphthyl)- α -nicotinyl-	C ₁₇ H ₁₈ N ₈ OS	171-172	13.68		13.76	
VI	β -(β -Naphthyl)- α -nicotinyl-	$C_{17}H_{18}N_{3}OS$	193-194	13.68	10.44	13.34	10.69
VII	α -Methyl- β -nicotinyl- α -phenyl-	$C_{14}H_{18}N_3OS$	156-157	15.49		15.31	
VIII	α -Ethyl- β -nicotinyl- α -phenyl-	$C_{1\delta}H_{1\delta}N_{\delta}OS$	123-124		11.24		11.46
IX	β -Nicotinyl- α , α -diphenyl-	$C_{19}H_{15}N_3OS$	162-163		9.62		10.02
\mathbf{X}	α -Benzyl- β -nicotinyl- α -phenyl-	$C_{20}H_{17}N_3OS$	150-151	12.10		11.81	
XI	Nicotinyl-	$C_7H_7N_3OS$	209-210		17.70		17.53

decomposed by an equivalent amount of anhydrous pyridine. The mixture was fractionated

- Douglass and Dains, This JOURNAL, 56, 719 (1934).
 "Organic Syntheses." 1924, Vol. IV, p. 49; Coll. Vol. I, p. 378.
 Meyer and Graf, Ber., 61B, 2205-2206 (1928).

Nicotinyl thioureas were prepared from acetone solutions of the mustard oil by a method already described.1

FARGO, NORTH DAKOTA RECEIVED APRIL 24, 1934